Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression

نویسندگان

  • Yu ZHU
  • Peng ZENG
چکیده

In regression with a high-dimensional predictor vector, it is important to estimate the central and central mean subspaces that preserve sufficient information about the response and the mean response. Using the Fourier transform, we have derived the candidate matrices whose column spaces recover the central and central mean subspaces exhaustively. Under the normality assumption of the predictors, explicit estimates of the central and central mean subspaces are derived. Bootstrap procedures are used for determining dimensionality and choosing tuning parameters. Simulation results and an application to a real data are reported. Our methods demonstrate competitive performance compared with SIR, SAVE, and other existing methods. The approach proposed in the article provides a novel view on sufficient dimension reduction and may lead to more powerful tools in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Using intraslice covariances for improved estimation of the central subspace in regression

Popular methods for estimating the central subspace in regression require slicing a continuous response. However, slicing can result in loss of information and in some cases that loss can be substantial. We use intraslice covariances to construct improved inference methods for the central subspace. These methods are optimal within a class of quadratic inference functions and permit chi-squared ...

متن کامل

Dimension Reduction in Regression Estimation with Nearest Neighbor

In regression with a high-dimensional predictor vector, dimension reduction methods aim at replacing the predictor by a lower dimensional version without loss of information on the regression. In this context, the so-called central mean subspace is the key of dimension reduction. The last two decades have seen the emergence of many methods to estimate the central mean subspace. In this paper, w...

متن کامل

Estimating the Number of Wideband Radio Sources

In this paper, a new approach for estimating the number of wideband sources is proposed which is based on RSS or ISM algorithms. Numerical results show that the MDL-based and EIT-based proposed algorithm havea much better detection performance than that in EGM and AIC cases for small differences between the incident angles of sources. In addition, for similar conditions, RSS algorithm offers hi...

متن کامل

On Dimension Reduction in Regressions with Multivariate Responses

This paper is concerned with dimension reduction in regressions with multivariate responses on high-dimensional predictors. A unified method that can be regarded as either an inverse regression approach or a forward regression method is proposed to recover the central dimension reduction subspace. By using Stein’s Lemma, the forward regression estimates the first derivative of the conditional c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006